Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 24(3): 422-433, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38087979

RESUMO

Within the tumor microenvironment (TME), cancer cells use mechanotransduction pathways to convert biophysical forces to biochemical signals. However, the underlying mechanisms and functional significance of these pathways remain largely unclear. The upregulation of mechanosensitive pathways from biophysical forces such as interstitial flow (IF), leads to the activation of various cytokines, including transforming growth factor-ß (TGF-ß). TGF-ß promotes in part via a Smad-dependent signaling pathway the epithelial-mesenchymal transition (EMT) in cancer cells. The latter process is linked to increased cancer cell motility and invasion. Current research models have limited ability to investigate the combined effects of biophysical forces (such as IF) and cytokines (TGF-ß) in a 3D microenvironment. We used a 3D-matrix based microfluidic platform to demonstrate the potentiating effect of IF on exogenous TGF-ß induced upregulation of the Smad-signaling activity and the expression of mesenchymal marker vimentin in A549 lung cancer spheroids. To monitor this, we used stably integrated fluorescent based reporters into the A549 cancer cell genome. Our results demonstrate that IF enhances exogenous TGF-ß induced Smad-signaling activity in lung cancer spheroids embedded in a matrix microenvironment. In addition, we observed an increased cell motility for A549 spheroids when exposed to IF and TGF-ß. Our 3D-microfluidic model integrated with real-time imaging provides a powerful tool for investigating cancer cell signaling and motility associated with invasion characteristics in a physiologically relevant TME.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Fator de Crescimento Transformador beta/genética , Microfluídica , Mecanotransdução Celular , Linhagem Celular Tumoral , Transdução de Sinais , Citocinas , Transição Epitelial-Mesenquimal , Movimento Celular , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Microambiente Tumoral
2.
EMBO J ; 42(2): e110553, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36504224

RESUMO

Epithelial-mesenchymal transition (EMT) is pivotal in the initiation and development of cancer cell metastasis. We observed that the abundance of glycosphingolipids (GSLs), especially ganglioside subtypes, decreased significantly during TGF-ß-induced EMT in NMuMG mouse mammary epithelial cells and A549 human lung adenocarcinoma cells. Transcriptional profiling showed that TGF-ß/SMAD response genes and EMT signatures were strongly enriched in NMuMG cells, along with depletion of UDP-glucose ceramide glucosyltransferase (UGCG), the enzyme that catalyzes the initial step in GSL biosynthesis. Consistent with this finding, genetic or pharmacological inhibition of UGCG promoted TGF-ß signaling and TGF-ß-induced EMT. UGCG inhibition promoted A549 cell migration, extravasation in the zebrafish xenograft model, and metastasis in mice. Mechanistically, GSLs inhibited TGF-ß signaling by promoting lipid raft localization of the TGF-ß type I receptor (TßRI) and by increasing TßRI ubiquitination and degradation. Importantly, we identified ST3GAL5-synthesized a-series gangliosides as the main GSL subtype involved in inhibition of TGF-ß signaling and TGF-ß-induced EMT in A549 cells. Notably, ST3GAL5 is weakly expressed in lung cancer tissues compared to adjacent nonmalignant tissues, and its expression correlates with good prognosis.


Assuntos
Neoplasias Pulmonares , Fator de Crescimento Transformador beta , Humanos , Animais , Camundongos , Fator de Crescimento Transformador beta/metabolismo , Gangliosídeos , Transição Epitelial-Mesenquimal/genética , Peixe-Zebra/metabolismo , Neoplasias Pulmonares/metabolismo , Glicoesfingolipídeos , Catálise , Movimento Celular , Linhagem Celular Tumoral
3.
Signal Transduct Target Ther ; 7(1): 126, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35484112

RESUMO

Ovo-like transcriptional repressor 1 (OVOL1) is a key mediator of epithelial lineage determination and mesenchymal-epithelial transition (MET). The cytokines transforming growth factor-ß (TGF-ß) and bone morphogenetic proteins (BMP) control the epithelial-mesenchymal plasticity (EMP) of cancer cells, but whether this occurs through interplay with OVOL1 is not known. Here, we show that OVOL1 is inversely correlated with the epithelial-mesenchymal transition (EMT) signature, and is an indicator of a favorable prognosis for breast cancer patients. OVOL1 suppresses EMT, migration, extravasation, and early metastatic events of breast cancer cells. Importantly, BMP strongly promotes the expression of OVOL1, which enhances BMP signaling in turn. This positive feedback loop is established through the inhibition of TGF-ß receptor signaling by OVOL1. Mechanistically, OVOL1 interacts with and prevents the ubiquitination and degradation of SMAD family member 7 (SMAD7), which is a negative regulator of TGF-ß type I receptor stability. Moreover, a small-molecule compound 6-formylindolo(3,2-b)carbazole (FICZ) was identified to activate OVOL1 expression and thereby antagonizing (at least in part) TGF-ß-mediated EMT and migration in breast cancer cells. Our results uncover a novel mechanism by which OVOL1 attenuates TGF-ß/SMAD signaling and maintains the epithelial identity of breast cancer cells.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Ligação a DNA , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Fatores de Transcrição , Fator de Crescimento Transformador beta/genética
4.
Front Cell Dev Biol ; 9: 616610, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33644053

RESUMO

Endothelial-to-mesenchymal transition (EndMT) plays an important role in embryonic development and disease progression. Yet, how different members of the transforming growth factor-ß (TGF-ß) family regulate EndMT is not well understood. In the current study, we report that TGF-ß2, but not bone morphogenetic protein (BMP)9, triggers EndMT in murine endothelial MS-1 and 2H11 cells. TGF-ß2 strongly upregulates the transcription factor SNAIL, and the depletion of Snail is sufficient to abrogate TGF-ß2-triggered mesenchymal-like cell morphology acquisition and EndMT-related molecular changes. Although SLUG is not regulated by TGF-ß2, knocking out Slug also partly inhibits TGF-ß2-induced EndMT in 2H11 cells. Interestingly, in addition to SNAIL and SLUG, BMP9 stimulates inhibitor of DNA binding (ID) proteins. The suppression of Id1, Id2, or Id3 expression facilitated BMP9 in inducing EndMT and, in contrast, ectopic expression of ID1, ID2, or ID3 abrogated TGF-ß2-mediated EndMT. Altogether, our results show that SNAIL is critical and indispensable for TGF-ß2-mediated EndMT. Although SLUG is also involved in the EndMT process, it plays less of a crucial role in it. In contrast, ID proteins are essential for maintaining endothelial traits and repressing the function of SNAIL and SLUG during the EndMT process. These data suggest that the control over endothelial vs. mesenchymal cell states is determined, at least in part, by a balance between the expression of SNAIL/SLUG and ID proteins.

5.
J Vis Exp ; (168)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33720132

RESUMO

In response to specific external cues and the activation of certain transcription factors, endothelial cells can differentiate into a mesenchymal-like phenotype, a process that is termed endothelial to mesenchymal transition (EndMT). Emerging results have suggested that EndMT is causally linked to multiple human diseases, such as fibrosis and cancer. In addition, endothelial-derived mesenchymal cells may be applied in tissue regeneration procedures, as they can be further differentiated into various cell types (e.g., osteoblasts and chondrocytes). Thus, the selective manipulation of EndMT may have clinical potential. Like epithelial-mesenchymal transition (EMT), EndMT can be strongly induced by the secreted cytokine transforming growth factor-beta (TGF-ß), which stimulates the expression of so-called EndMT transcription factors (EndMT-TFs), including Snail and Slug. These EndMT-TFs then up- and downregulate the levels of mesenchymal and endothelial proteins, respectively. Here, we describe methods to investigate TGF-ß-induced EndMT in vitro, including a protocol to study the role of particular TFs in TGF-ß-induced EndMT. Using these techniques, we provide evidence that TGF-ß2 stimulates EndMT in murine pancreatic microvascular endothelial cells (MS-1 cells), and that the genetic depletion of Snail using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated gene editing, abrogates this phenomenon. This approach may serve as a model to interrogate potential modulators of endothelial biology, and can be used to perform genetic or pharmacological screens in order to identify novel regulators of EndMT, with potential application in human disease.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Células Endoteliais/metabolismo , Edição de Genes , Mesoderma/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Linhagem Celular , Fatores de Crescimento Endotelial/genética , Fatores de Crescimento Endotelial/metabolismo , Imunofluorescência , Camundongos , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta/genética
6.
J Vis Exp ; (164)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33191940

RESUMO

Transforming growth factor-ß (TGF-ß) is a secreted multifunctional factor that plays a key role in intercellular communication. Perturbations of TGF-ß signaling can lead to breast cancer. TGF-ß elicits its effects on proliferation and differentiation via specific cell surface TGF-ß type I and type II receptors (i.e., TßRI and TßRII) that contain an intrinsic serine/threonine kinase domain. Upon TGF-ß-induced heteromeric complex formation, activated TßRI elicits intracellular signaling by phosphorylating SMAD2 and SMAD3. These activated SMADs form heteromeric complexes with SMAD4 to regulate specific target genes, including plasminogen activation inhibitor 1 (PAI-1, encoded by the SERPINE1 gene). The induction of epithelial-to-mesenchymal transition (EMT) allows epithelial cancer cells at the primary site or during colonization at distant sites to gain an invasive phenotype and drive tumor progression. TGF-ß acts as a potent inducer of breast cancer invasion by driving EMT. Here, we describe systematic methods to investigate TGF-ß signaling and EMT responses using premalignant human MCF10A-RAS (M2) cells and mouse NMuMG epithelial cells as examples. We describe methods to determine TGF-ß-induced SMAD2 phosphorylation by Western blotting, SMAD3/SMAD4-dependent transcriptional activity using luciferase reporter activity and SERPINE1 target gene expression by quantitative real-time-polymerase chain reaction (qRT-PCR). In addition, methods are described to examine TGF-ß-induced EMT by measuring changes in morphology, epithelial and mesenchymal marker expression, filamentous actin staining and immunofluorescence staining of E-cadherin. Two selective small molecule TGF-ß receptor kinase inhibitors, GW788388 and SB431542, were used to block TGF-ß-induced SMAD2 phosphorylation, target genes and changes in EMT marker expression. Moreover, we describe the transdifferentiation of mesenchymal breast Py2T murine epithelial tumor cells into adipocytes. Methods to examine TGF-ß-induced signaling and EMT in breast cancer may contribute to new therapeutic approaches for breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Benzamidas/farmacologia , Dioxóis/farmacologia , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Camundongos , Fosforilação/efeitos dos fármacos , Pirazóis/farmacologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Transcrição Gênica/efeitos dos fármacos
7.
Dis Model Mech ; 13(9)2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32820031

RESUMO

Zebrafish models are well-established tools for investigating the underlying mechanisms of diseases. Here, we identified cercosporamide, a metabolite from the fungus Ascochyta aquiliqiae, as a potent bone morphogenetic protein receptor (BMPR) type I kinase inhibitor through a zebrafish embryo phenotypic screen. The developmental defects in zebrafish, including lack of the ventral fin, induced by cercosporamide were strikingly similar to the phenotypes caused by renowned small-molecule BMPR type I kinase inhibitors and inactivating mutations in zebrafish BMPRs. In mammalian cell-based assays, cercosporamide blocked BMP/SMAD-dependent transcriptional reporter activity and BMP-induced SMAD1/5-phosphorylation. Biochemical assays with a panel of purified recombinant kinases demonstrated that cercosporamide directly inhibited kinase activity of type I BMPRs [also called activin receptor-like kinases (ALKs)]. In mammalian cells, cercosporamide selectively inhibited constitutively active BMPR type I-induced SMAD1/5 phosphorylation. Importantly, cercosporamide rescued the developmental defects caused by constitutively active Alk2 in zebrafish embryos. We believe that cercosporamide could be the first of a new class of molecules with potential to be developed further for clinical use against diseases that are causally linked to overactivation of BMPR signaling, including fibrodysplasia ossificans progressiva and diffuse intrinsic pontine glioma.This article has an associated First Person interview with the first author of the paper.


Assuntos
Benzofuranos/farmacologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Peixe-Zebra/metabolismo , Animais , Benzofuranos/química , Benzofuranos/isolamento & purificação , Bioensaio , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/antagonistas & inibidores , Proteínas Morfogenéticas Ósseas/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Diabetes ; 66(12): 2942-2951, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28882901

RESUMO

Obstructive sleep apnea syndrome is a highly prevalent disease resulting in transient respiratory arrest and chronic intermittent hypoxia (cIH). cIH is associated with insulin resistance and impaired metabolic homeostasis in rodents and humans, but the exact underlying mechanisms remain unclear. In the current study, we investigated the effects of 2 weeks of cIH (1-min cycle, fraction of inspired oxygen 21-5%, 8 h/day) on whole-body insulin sensitivity and glucose tolerance in lean mice. Although food intake and body weight were reduced compared with normoxia, cIH induced systemic insulin resistance in a hypoxia-inducible factor 1-independent manner and impaired insulin signaling in liver, white adipose tissue, and skeletal muscle. Unexpectedly, cIH improved whole-body glucose tolerance independently of changes in body weight and glucose-induced insulin response. This effect was associated with elevated phosphorylation of Thr172-AMPK and Ser237-TBC1 domain family member 1 (TBC1D1) in skeletal muscle, suggesting a tissue-specific AMPK-dependent increase in TBC1D1-driven glucose uptake. Remarkably, although food intake, body weight, and systemic insulin sensitivity were still affected, the improvement in glucose tolerance by cIH was abolished in muscle-specific AMPKα1α2-deficient mice. We conclude that cIH impairs insulin sensitivity while improving whole-body glucose tolerance by promoting specific activation of the skeletal muscle AMPK pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Hipóxia/metabolismo , Resistência à Insulina , Músculo Esquelético/enzimologia , Animais , Doença Crônica , Ativação Enzimática , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Sci Rep ; 6: 24618, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27094951

RESUMO

Obesity is associated with local tissue hypoxia and elevated hypoxia-inducible factor 1 alpha (HIF-1α) in metabolic tissues. Prolyl hydroxylases (PHDs) play an important role in regulating HIF-α isoform stability. In the present study, we investigated the consequence of whole-body PHD1 gene (Egln2) inactivation on metabolic homeostasis in mice. At baseline, PHD1-/- mice exhibited higher white adipose tissue (WAT) mass, despite lower body weight, and impaired insulin sensitivity and glucose tolerance when compared to age-matched wild-type (WT) mice. When fed a synthetic low-fat diet, PHD1-/- mice also exhibit a higher body weight gain and WAT mass along with glucose intolerance and systemic insulin resistance compared to WT mice. PHD1 deficiency led to increase in glycolytic gene expression, lipogenic proteins ACC and FAS, hepatic steatosis and liver-specific insulin resistance. Furthermore, gene markers of inflammation were also increased in the liver, but not in WAT or skeletal muscle, of PHD1-/- mice. As expected, high-fat diet (HFD) promoted obesity, hepatic steatosis, tissue-specific inflammation and systemic insulin resistance in WT mice but these diet-induced metabolic alterations were not exacerbated in PHD1-/- mice. In conclusion, PHD1 deficiency promotes hepatic steatosis and liver-specific insulin resistance but does not worsen the deleterious effects of HFD on metabolic homeostasis.


Assuntos
Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Resistência à Insulina/genética , Pró-Colágeno-Prolina Dioxigenase/deficiência , Adiposidade , Animais , Peso Corporal , Dieta Hiperlipídica , Modelos Animais de Doenças , Dislipidemias/metabolismo , Metabolismo Energético , Fígado Gorduroso/patologia , Intolerância à Glucose/metabolismo , Homeostase , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Knockout , Especificidade de Órgãos/genética
10.
FASEB J ; 29(7): 3027-39, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25852044

RESUMO

Chronic low-grade inflammation associated with obesity contributes to insulin resistance and type 2 diabetes. Helminth parasites are the strongest natural inducers of type 2 immune responses, and short-lived infection with rodent nematodes was reported to improve glucose tolerance in obese mice. Here, we investigated the effects of chronic infection (12 weeks) with Schistosoma mansoni, a helminth that infects millions of humans worldwide, on whole-body metabolic homeostasis and white adipose tissue (WAT) immune cell composition in high-fat diet-induced obese C57BL/6 male mice. Our data indicate that chronic helminth infection reduced body weight gain (-62%), fat mass gain (-89%), and adipocyte size; lowered whole-body insulin resistance (-23%) and glucose intolerance (-16%); and improved peripheral glucose uptake (+25%) and WAT insulin sensitivity. Analysis of immune cell composition by flow cytometry and quantitative PCR (qPCR) revealed that S. mansoni promoted strong increases in WAT eosinophils and alternatively activated (M2) macrophages. Importantly, injections with S. mansoni-soluble egg antigens (SEA) recapitulated the beneficial effect of parasite infection on whole-body metabolic homeostasis and induced type 2 immune responses in WAT and liver. Taken together, we provide novel data suggesting that chronic helminth infection and helminth-derived molecules protect against metabolic disorders by promoting a T helper 2 (Th2) response, eosinophilia, and WAT M2 polarization.


Assuntos
Antígenos de Helmintos/administração & dosagem , Resistência à Insulina/imunologia , Obesidade/complicações , Obesidade/imunologia , Esquistossomose mansoni/complicações , Esquistossomose mansoni/imunologia , Tecido Adiposo Branco/imunologia , Tecido Adiposo Branco/patologia , Animais , Doença Crônica , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Eosinófilos/imunologia , Feminino , Teste de Tolerância a Glucose , Humanos , Resistência à Insulina/fisiologia , Fígado/imunologia , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Schistosoma mansoni/imunologia , Esquistossomose mansoni/metabolismo , Células Th2/imunologia
11.
Diabetologia ; 58(1): 165-77, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25316433

RESUMO

AIMS/HYPOTHESIS: South Asians have a higher risk of developing type 2 diabetes than Europeans. The underlying cause of this excess risk is still poorly understood but might be related to differences in the regulation of energy/nutrient-sensing pathways in metabolic tissues and subsequent changes in whole-body substrate metabolism. In this study, we investigated the whole-body and skeletal muscle metabolic adaptations to short-term energy restriction in South Asian and European volunteers. METHODS: Twenty-four middle-aged overweight South Asian and European men underwent a two-step hyperinsulinaemic-euglycaemic clamp, with skeletal muscle biopsies and indirect calorimetry before and after an 8 day diet very low in energy (very low calorie diet [VLCD]). Abdominal fat distribution and hepatic triacylglycerol content were assessed using MRI and MR spectroscopy. RESULTS: South Asian men had higher hepatic triacylglycerol content than European men, and exhibited elevated clamp insulin levels that probably reflect a lower insulin clearance rate. Despite higher insulin levels, endogenous glucose production rate was similar and glucose disposal rate (Rd) and nonoxidative glucose disposal rate (NOGD) were significantly lower in South Asian than European men, indicating impaired whole-body insulin sensitivity. Energy restriction decreased abdominal fat mass and hepatic triacylglycerol content in both groups. However, the shift induced by energy restriction from glucose towards lipid oxidation observed in European men was impaired in South Asian men, indicating whole-body metabolic inflexibility. Remarkably, although energy restriction improved hepatic insulin sensitivity in both groups, Rd improved only in South Asian men owing to higher NOGD. At the molecular level, an increase in insulin-induced activation of the skeletal muscle mTOR pathway was found in South Asian men, showing that skeletal muscle energy/nutrient-sensing pathways were differentially affected by energy restriction. CONCLUSIONS/INTERPRETATION: We conclude that South Asian men exhibit a different metabolic adaptation to short-term energy restriction than European men. TRIAL REGISTRATION: Dutch trial registry ( www.trialregister.nl ), trial number NTR 2473.


Assuntos
Adaptação Fisiológica/fisiologia , Povo Asiático , Restrição Calórica , Sobrepeso/dietoterapia , Sobrepeso/etnologia , Sobrepeso/metabolismo , População Branca , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Ásia/etnologia , Restrição Calórica/etnologia , Humanos , Metabolismo dos Lipídeos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Países Baixos , Transdução de Sinais
12.
Am J Physiol Endocrinol Metab ; 307(10): E885-95, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25249505

RESUMO

During fasting, rapid metabolic adaptations are required to maintain energy homeostasis. This occurs by a coordinated regulation of energy/nutrient-sensing pathways leading to transcriptional activation and repression of specific sets of genes. The aim of the study was to investigate how short-term fasting affects whole body energy homeostasis and skeletal muscle energy/nutrient-sensing pathways and transcriptome in humans. For this purpose, 12 young healthy men were studied during a 24-h fast. Whole body glucose/lipid oxidation rates were determined by indirect calorimetry, and blood and skeletal muscle biopsies were collected and analyzed at baseline and after 10 and 24 h of fasting. As expected, fasting induced a time-dependent decrease in plasma insulin and leptin levels, whereas levels of ketone bodies and free fatty acids increased. This was associated with a metabolic shift from glucose toward lipid oxidation. At the molecular level, activation of the protein kinase B (PKB/Akt) and mammalian target of rapamycin pathways was time-dependently reduced in skeletal muscle during fasting, whereas the AMP-activated protein kinase activity remained unaffected. Furthermore, we report some changes in the phosphorylation and/or content of forkhead protein 1, sirtuin 1, and class IIa histone deacetylase 4, suggesting that these pathways might be involved in the transcriptional adaptation to fasting. Finally, transcriptome profiling identified genes that were significantly regulated by fasting in skeletal muscle at both early and late time points. Collectively, our study provides a comprehensive map of the main energy/nutrient-sensing pathways and transcriptomic changes during short-term adaptation to fasting in human skeletal muscle.


Assuntos
Adaptação Fisiológica/fisiologia , Metabolismo Energético/fisiologia , Jejum/metabolismo , Músculo Esquelético/metabolismo , Adaptação Fisiológica/genética , Calorimetria Indireta , Metabolismo Energético/genética , Ácidos Graxos não Esterificados/sangue , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Homeostase , Humanos , Insulina/sangue , Corpos Cetônicos/sangue , Leptina/sangue , Masculino , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Serina-Treonina Quinases TOR/genética , Adulto Jovem
13.
Diabetes ; 63(1): 248-58, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24357702

RESUMO

South Asians (SAs) develop type 2 diabetes at a younger age and lower BMI compared with Caucasians (Cs). The underlying cause is still poorly understood but might result from an innate inability to adapt to the Westernized diet. This study aimed to compare the metabolic adaptation to a high-fat, high-calorie (HFHC) diet between both ethnicities. Twelve healthy, young lean male SAs and 12 matched Cs underwent a two-step hyperinsulinemic-euglycemic clamp with skeletal muscle biopsies and indirect calorimetry before and after a 5-day HFHC diet. Hepatic triglyceride content (HTG) and abdominal fat distribution were assessed using magnetic resonance imaging and spectroscopy. At baseline, SAs had higher insulin clamp levels than Cs, indicating reduced insulin clearance rate. Despite the higher insulin levels, endogenous glucose production was comparable between groups, suggesting lower hepatic insulin sensitivity in SAs. Furthermore, a 5-day HFHC diet decreased the insulin-stimulated (nonoxidative) glucose disposal rate only in SA. In skeletal muscle, no significant differences were found between groups in insulin/mammalian target of rapamycin signaling, metabolic gene expression, and mitochondrial respiratory chain content. Furthermore, no differences in (mobilization of) HTG and abdominal fat were detected. We conclude that HFHC feeding rapidly induces insulin resistance only in SAs. Thus, distinct adaptation to Western food may partly explain their propensity to develop type 2 diabetes.


Assuntos
Povo Asiático , Dieta Hiperlipídica , Dieta/etnologia , Resistência à Insulina/etnologia , Metabolismo dos Lipídeos/fisiologia , População Branca , Adulto , Glicemia/metabolismo , Técnica Clamp de Glucose , Humanos , Resistência à Insulina/fisiologia , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Triglicerídeos/metabolismo
14.
Diabetes ; 63(3): 880-91, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24270984

RESUMO

Metformin is the first-line drug for the treatment of type 2 diabetes. Besides its well-characterized antihyperglycemic properties, metformin also lowers plasma VLDL triglyceride (TG). In this study, we investigated the underlying mechanisms in APOE*3-Leiden.CETP mice, a well-established model for human-like lipoprotein metabolism. We found that metformin markedly lowered plasma total cholesterol and TG levels, an effect mostly due to a decrease in VLDL-TG, whereas HDL was slightly increased. Strikingly, metformin did not affect hepatic VLDL-TG production, VLDL particle composition, and hepatic lipid composition but selectively enhanced clearance of glycerol tri[(3)H]oleate-labeled VLDL-like emulsion particles into brown adipose tissue (BAT). BAT mass and lipid droplet content were reduced in metformin-treated mice, pointing to increased BAT activation. In addition, both AMP-activated protein kinase α1 (AMPKα1) expression and activity and HSL and mitochondrial content were increased in BAT. Furthermore, therapeutic concentrations of metformin increased AMPK and HSL activities and promoted lipolysis in T37i differentiated brown adipocytes. Collectively, our results identify BAT as an important player in the TG-lowering effect of metformin by enhancing VLDL-TG uptake, intracellular TG lipolysis, and subsequent mitochondrial fatty acid oxidation. Targeting BAT might therefore be considered as a future therapeutic strategy for the treatment of dyslipidemia.


Assuntos
Tecido Adiposo Marrom/metabolismo , Hipoglicemiantes/farmacologia , Lipoproteínas VLDL/metabolismo , Metformina/farmacologia , Triglicerídeos/sangue , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células Cultivadas , Colesterol/sangue , Dislipidemias/tratamento farmacológico , Feminino , Lipólise/efeitos dos fármacos , Lipase Lipoproteica/fisiologia , Camundongos , Triglicerídeos/metabolismo
15.
Immunol Cell Biol ; 91(7): 486-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23835553

RESUMO

Recent reports have attributed an immunoregulatory role to the mammalian target of rapamycin (mTOR), a key serine/threonine protein kinase integrating input from growth factors and nutrients to promote cell growth and differentiation. In the present study, we investigated the role of the mTOR pathway in Th2 induction by human monocyte-derived dendritic cells (moDCs). Using a co-culture system of human lipopolysaccharide (LPS)-matured moDCs and allogeneic naive CD4(+) T cells, we show that inhibition of mTOR by the immunosuppressive drug rapamycin reduced moDC maturation and promoted Th2 skewing. Next, we investigated whether antigens from helminth parasites, the strongest natural inducers of Th2 responses, modulate moDCs via the mTOR pathway. In contrast to rapamycin, neither Schistosoma mansoni-soluble egg antigens (SEA) nor its major immunomodulatory component omega-1 affected the phosphorylation of S6 kinase (S6K) and 4E-binding protein 1 (4E-BP1), downstream targets of mTORC1. Finally, we found that the effects of rapamycin and SEA/omega-1 on Th2 skewing were additive, suggesting two distinct underlying molecular mechanisms. We conclude that conditioning human moDCs to skew immune responses towards Th2 can be achieved via an mTOR-dependent and -independent pathway triggered by rapamycin and helminth antigens, respectively.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Schistosoma mansoni/imunologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antígenos de Helmintos/imunologia , Proteínas de Ciclo Celular , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Proteínas do Ovo/imunologia , Proteínas de Helminto/imunologia , Humanos , Isoantígenos/imunologia , Lipopolissacarídeos/imunologia , Fosfoproteínas/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/imunologia , Equilíbrio Th1-Th2/efeitos dos fármacos
16.
Cell Signal ; 25(9): 1762-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23712034

RESUMO

The proline-rich Akt substrate of 40-kDa (PRAS40) has been linked to the regulation of the activity of the mammalian target of rapamycin complex 1 as well as insulin action. Despite these cytosolic functions, PRAS40 was originally identified as nuclear phosphoprotein in Hela cells. This study aimed to detail mechanisms and consequences of the nucleocytosolic trafficking of PRAS40. Sequence analysis identified a potential leucine-rich nuclear export signal (NES) within PRAS40. Incubation of A14 fibroblasts overexpressing human PRAS40 (hPRAS40) resulted in nuclear accumulation of the protein. Furthermore, mutation of the NES mimicked the effects of leptomycin B, a specific inhibitor of nuclear export, on the subcellular localization of hPRAS40. Finally, A14 cells expressing the NES-mutant showed impaired activation of components of the Akt-pathway as well as of the mTORC1 substrate p70 S6 kinase after insulin stimulation. This impaired insulin signaling could be ascribed to reduced protein levels of insulin receptor substrate 1 in cells expressing mutant NES. In conclusion, PRAS40 contains a functional nuclear export signal. Furthermore, enforced nuclear accumulation of PRAS40 impairs insulin action, thereby substantiating the function of this protein in the regulation of insulin sensitivity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sinais de Exportação Nuclear , Prolina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Núcleo Celular/metabolismo , Humanos , Insulina/metabolismo , Proteínas de Membrana , Camundongos , Mutação , Células NIH 3T3 , Ratos , Proteínas de Saccharomyces cerevisiae
17.
Arch Physiol Biochem ; 119(2): 52-64, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23506355

RESUMO

Synthetic glucocorticoids are potent anti-inflammatory drugs but show dose-dependent metabolic side effects such as the development of insulin resistance and obesity. The precise mechanisms involved in these glucocorticoid-induced side effects, and especially the participation of adipose tissue in this are not completely understood. We used a combination of transcriptomics, antibody arrays and bioinformatics approaches to characterize prednisolone-induced alterations in gene expression and adipokine secretion, which could underlie metabolic dysfunction in 3T3-L1 adipocytes. Several pathways, including cytokine signalling, Akt signalling, and Wnt signalling were found to be regulated at multiple levels, showing that these processes are targeted by prednisolone. These results suggest that mechanisms by which prednisolone induce insulin resistance include dysregulation of wnt signalling and immune response processes. These pathways may provide interesting targets for the development of improved glucocorticoids.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Prednisolona/efeitos adversos , Prednisolona/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Células 3T3-L1 , Adipocinas/genética , Animais , Desoxiglucose/metabolismo , Expressão Gênica/efeitos dos fármacos , Glucocorticoides/efeitos adversos , Glucocorticoides/farmacologia , Imunidade/efeitos dos fármacos , Insulina/farmacologia , Resistência à Insulina , Camundongos , Transdução de Sinais/efeitos dos fármacos , Análise Serial de Tecidos , Transcriptoma/efeitos dos fármacos , Via de Sinalização Wnt/genética
18.
Am J Physiol Endocrinol Metab ; 304(9): E1012-21, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23512807

RESUMO

Obesity in humans is often associated with metabolic inflexibility, but the underlying molecular mechanisms remain incompletely understood. The aim of the present study was to investigate how adaptation to prolonged fasting affects energy/nutrient-sensing pathways and metabolic gene expression in skeletal muscle from lean and obese individuals. Twelve lean and 14 nondiabetic obese subjects were fasted for 48 h. Whole body glucose/lipid oxidation rates were determined by indirect calorimetry, and blood and skeletal muscle biopsies were collected and analyzed. In response to fasting, body weight loss was similar in both groups, but the decrease in plasma insulin and leptin and the concomitant increase in growth hormone were significantly attenuated in obese subjects. The fasting-induced shift from glucose toward lipid oxidation was also severely blunted. At the molecular level, the expression of insulin receptor-ß (IRß) was lower in skeletal muscle from obese subjects at baseline, whereas the fasting-induced reductions in insulin signaling were similar in both groups. The protein expression of mitochondrial respiratory chain components, although not modified by fasting, was significantly reduced in obese subjects. Some minor differences in metabolic gene expression were observed at baseline and in response to fasting. Surprisingly, fasting reduced AMPK activity in lean but not in obese subjects, whereas the expression of AMPK subunits was not affected. We conclude that whole body metabolic inflexibility in response to prolonged fasting in obese humans is associated with lower skeletal muscle IRß and mitochondrial respiratory chain content as well as a blunted decline of AMPK activity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/fisiologia , Transporte de Elétrons/fisiologia , Jejum/metabolismo , Expressão Gênica/fisiologia , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Transdução de Sinais/fisiologia , Adulto , Antígenos CD/biossíntese , Antígenos CD/genética , Western Blotting , Composição Corporal/fisiologia , Peso Corporal/fisiologia , Calorimetria Indireta , Feminino , Glucose/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Peroxidação de Lipídeos/fisiologia , Masculino , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Reação em Cadeia da Polimerase em Tempo Real , Receptor de Insulina/biossíntese , Receptor de Insulina/genética , Fatores de Transcrição/metabolismo
19.
Cell Signal ; 23(11): 1708-15, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21689745

RESUMO

Glucocorticoids (GCs), such as prednisolone (PRED), are widely prescribed anti-inflammatory drugs, but their use may induce glucose intolerance and diabetes. GC-induced beta cell dysfunction contributes to these diabetogenic effects through mechanisms that remain to be elucidated. In this study, we hypothesized that activation of the unfolded protein response (UPR) following endoplasmic reticulum (ER) stress could be one of the underlying mechanisms involved in GC-induced beta cell dysfunction. We report here that PRED did not affect basal insulin release but time-dependently inhibited glucose-stimulated insulin secretion in INS-1E cells. PRED treatment also decreased both PDX1 and insulin expression, leading to a marked reduction in cellular insulin content. These PRED-induced detrimental effects were found to be prevented by prior treatment with the glucocorticoid receptor (GR) antagonist RU486 and associated with activation of two of the three branches of the UPR. Indeed, PRED induced a GR-mediated activation of both ATF6 and IRE1/XBP1 pathways but was found to reduce the phosphorylation of PERK and its downstream substrate eIF2α. These modulations of ER stress pathways were accompanied by upregulation of calpain 10 and increased cleaved caspase 3, indicating that long term exposure to PRED ultimately promotes apoptosis. Taken together, our data suggest that the inhibition of insulin biosynthesis by PRED in the insulin-secreting INS-1E cells results, at least in part, from a GR-mediated impairment in ER homeostasis which may lead to apoptotic cell death.


Assuntos
Retículo Endoplasmático/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Insulina , Prednisolona , Transdução de Sinais/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Animais , Apoptose/efeitos dos fármacos , Calpaína/genética , Calpaína/metabolismo , Linhagem Celular , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mifepristona/farmacologia , Fosforilação/efeitos dos fármacos , Prednisolona/efeitos adversos , Prednisolona/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Receptores de Glucocorticoides/antagonistas & inibidores , Transdução de Sinais/genética , Transativadores/genética , Transativadores/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
20.
Cell Signal ; 22(6): 961-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20138985

RESUMO

Type 2 diabetes is associated with alterations in protein kinase B (PKB/Akt) and mammalian target of rapamycin complex 1 (mTORC1) signalling. The proline-rich Akt substrate of 40-kDa (PRAS40) is a component of mTORC1, which has a regulatory function at the intersection of the PKB/Akt and mTORC1 signalling pathway. Phosphorylation of PRAS40-Thr246 by PKB/Akt, and PRAS40-Ser183 and PRAS40-Ser221 by mTORC1 results in dissociation from mTORC1, and its binding to 14-3-3 proteins. Although all phosphorylation sites within PRAS40 have been implicated in 14-3-3 binding, substitution of Thr246 by Ala alone is sufficient to abolish 14-3-3 binding under conditions of intact mTORC1 signalling. This suggests that phosphorylation of PRAS40-Thr246 may facilitate efficient phosphorylation of PRAS40 on its mTORC1-dependent sites. In the present study, we investigated the mechanism of PRAS40-Ser183 phosphorylation in response to insulin. Insulin promoted PRAS40-Ser183 phosphorylation after a euglycaemic-hyperinsulinaemic clamp in human skeletal muscle. The insulin-induced PRAS40-Ser183 phosphorylation was further evidenced in vivo in rat skeletal and cardiac muscle, and in vitro in A14 fibroblasts, 3T3L1 adipocytes and L6 myotubes. Inhibition of mTORC1 by rapamycin or amino acid deprivation partially abrogated insulin-mediated PRAS40-Ser183 phosphorylation in cultured cell lines. However, lowering insulin-induced PRAS40-Thr246 phosphorylation using wortmannin or palmitate in cell lines, or by feeding rats a high-fat diet, completely abolished insulin-mediated PRAS40-Ser183 phosphorylation. In addition, replacement of Thr246 by Ala reduced insulin-mediated PRAS40-Ser183 phosphorylation. We conclude that PRAS40-Ser183 is a component of insulin action, and that efficient phosphorylation of PRAS40-Ser183 by mTORC1 requires the phosphorylation of PRAS40-Thr246 by PKB/Akt.


Assuntos
Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina/metabolismo , Treonina/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Androstadienos/farmacologia , Animais , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Humanos , Insulina/farmacologia , Resistência à Insulina , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Células NIH 3T3 , Fosfoproteínas/química , Fosforilação , Ratos , Sirolimo/farmacologia , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...